3=-16t^2+200

Simple and best practice solution for 3=-16t^2+200 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3=-16t^2+200 equation:



3=-16t^2+200
We move all terms to the left:
3-(-16t^2+200)=0
We get rid of parentheses
16t^2-200+3=0
We add all the numbers together, and all the variables
16t^2-197=0
a = 16; b = 0; c = -197;
Δ = b2-4ac
Δ = 02-4·16·(-197)
Δ = 12608
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{12608}=\sqrt{64*197}=\sqrt{64}*\sqrt{197}=8\sqrt{197}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{197}}{2*16}=\frac{0-8\sqrt{197}}{32} =-\frac{8\sqrt{197}}{32} =-\frac{\sqrt{197}}{4} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{197}}{2*16}=\frac{0+8\sqrt{197}}{32} =\frac{8\sqrt{197}}{32} =\frac{\sqrt{197}}{4} $

See similar equations:

| 2=c/5-2 | | 10(b-82)=80 | | -9x+(-17)=-71 | | 5x+3=3x+7=180 | | 1/2(4c+33)=1/4(2c+9) | | (80-2y)y=768 | | 12x^2-5x-20=0 | | (4z)+8=-7 | | 2x=-x+476 | | 60=7x-38 | | 688=4(x=19) | | 4d−13=3 | | 1/4(2x=8)=-16 | | 4y+2=8y | | 3x-4+14=2(x-9)=2x-2 | | 688=4(x+4 | | 3w-(9+9w)=3(w-3) | | 2x+10/2=8 | | 97=5x-(-22) | | 3x÷2=7÷2 | | 2x+5=19x+7 | | h/3+15=17 | | 0.30x+0.05(18-x)=0.10(39) | | h3+ 15=17 | | (x/10)-2=10 | | 10x-2=8x+16 | | (3x+15)/(4x-12)=0 | | 2x-200=0 | | 3/8+1/2*x=2/x | | -83=6x-17 | | (z/10)+1=8 | | 11=-8y-5 |

Equations solver categories